Last time, I discussed a bit about the relationship between the Chow groups of a nonsingular variety X and its K-theory. In this post, I want to specialize to the case when X is a Grassmannian and explain some of the combinatorics behind this relationship.

**Set-valued tableaux**

For a partition , we let denote its Young diagram, i.e., we draw boxes in the ith row (counting from top to bottom) all left-justified. Also denotes the sum of its parts. Given two partitions , with (i.e., for all i), we set denote its Young diagram.

Given two finite subsets A and B of positive integers, denote A<B if max(A) < min(B) and if . This is not meant to define a partial order.

A **set-valued tableau** of is an assignment T of a finite subset of positive integers to each cell in such a way that and using the notation for subsets defined above. Given a set-valued tableau T, we associate to it a monomial where is the number of times that the integer i appears in a cell of T. Also, let |T| denote the total degree of this monomial. We define the **(single stable) Grothendieck polynomial** to be

where the sum is over all set-valued tableaux of . Then is a symmetric function in the . This is not obvious, but one can prove it to be true purely combinatorially in the same way one can prove that Schur functions are symmetric purely combinatorially (it is enough to show that it is invariant under switching and , and this can be shown by directly switching the number of i’s and (i+1)’s within any given set-valued tableau).

In the case that each subset has size 1, the definition of a set-valued tableau specializes to the notion of a semistandard Young tableau, so the lowest degree term of is the skew Schur function (by definition, if you like). Let be the subring of the symmetric functions generated by the . Since the Schur functions are linearly independent as we vary over all partitions, the same is true for the (in fact, they form a basis).

**K-theory of the Grassmannian**

Let X be Gr(k,n), the Grassmannian of k-planes in an n-dimensional vector space V. Let be the tautological subbundle of rank k on X, i.e., the fiber of over a point (which is a subspace of V) of X is identified with the subspace itself, and let denote its dual.

Given a vector bundle E which is a direct sum of line bundles , we set

as an element in the K-theory K(X). Since is symmetric, this is well-defined. Furthermore, this implies that is a polynomial in the elementary symmetric functions in the variables . But each of these elementary symmetric functions can be expressed solely in terms of an appropriate exterior power of E. Hence, we can make this definition for arbitrary E that do not split up as a sum of line bundles.

We define a map by . This map is surjective, and its kernel is the ideal generated by such that the partition does not fit inside the rectangular partition.

**Cohomology of the Grassmannian**

We have a similar situation when we study the cohomology ring (equivalently in this case, the Chow ring) of X. Fix a basis for V. Let B be the subgroup of upper triangular matrices with respect to this basis. For a partition fitting inside the rectangle, define a point in the Grassmannian to be the subspace , and define the **Schubert variety** to be the closure of the B orbit of . It has codimension inside of the Grassmannian. Let denote the Poincaré dual of the Schubert variety . Let denote the ring of symmetric functions. Then the map defined by is surjective, and the kernel is the ideal generated by for which do not fit inside the rectangular partition.

**Relationship between K-theory and cohomology**

Combinatorially, we can see that the associated graded of the K-theory coincides with the cohomology of the Grassmannian. To be precise, we can filter the ring by the ideals . Then the Grothendieck polynomials get turned into their lowest degree terms, which we saw above are just the corresponding Schur functions.

Geometrically, we have the following. If is the cohomology class of the Schubert variety corresponding to the partition with one part equal to m, then is the mth Chern class of the quotient bundle . The mth Chern class of is the mth elementary symmetric function in the Chern roots of ; let denote the mth homogeneous symmetric function in the Chern roots. In general one has the identity

(m > 0),

and from the short exact sequence , we get that

(m > 0),

since the Chern classes of a trivial vector bundle are 0. Hence we conclude that for all j.

The map from cohomology to the associated graded of K-theory sends the Chern class of a line bundle L to the class . This follows from the definition given last time, the short exact sequence when D is an effective divisor and L is the line bundle associated with D, and the fact that in cohomology, and then extending linearly to all divisors.

So we see that gets sent to the image of in the associated graded of K(X). Now we can deduce the general case by quoting the fact that the cohomology ring of the Grassmannian is generated by the classes .

So everything matches up! There is more I could say about the combinatorics of Grothendieck polynomials, but I’ll stop here.

-Steven

## Leave a Reply